Please attach a narrative (not to exceed 4 pages, excluding appendices) addressing the following:

- What are the student learning outcomes? Please provide a numbered list.

 1. Graduates of the program are expected to be successful in pursuing careers in the direct practice of physics or further education in more advanced programs in physics or related fields.

 2. Graduates of the program are ready to be team contributors or leaders, capable of collaboration and thinking independently.

 3. Graduates of the program are trained to be effective communicators (both orally and in the written word) professionally and socially.

 4. Graduates of the program are prepared through coursework and cutting-edge research to be professional problem solvers.

 5. Graduates are expected to possess the ability to work in the laboratory, understand how to take and analyze experimental data and/or generate
Which learning outcomes were assessed? All outcomes were assessed (1-5).

How were they assessed? (Programs must use at least one direct assessment of student learning.) Our primary tools of assessment lie in the thesis requirement. The masters candidate presents his/her thesis work in written form (the thesis) and in oral form (the defense). Outcomes 1-5 are assessed during this time. We also conduct an exit interview with all of our students to partially-assess outcome 1 and via subsequent contact with the students after graduation.

Undergraduate programs should assess at least one University Undergraduate Learning Outcome (UULO) each year, which may or may not overlap with a program learning outcome. Not applicable as this is a graduate degree.

Graduate programs should assess at least one outcome related to one of the following graduate level requirements each year:

6. student engagement in research, scholarship, creative expression and/or appropriate high-level professional practice.
7. activities requiring originality, critical analysis and expertise.
8. the development of extensive knowledge in the field under study.

For the masters of science in physics degree, we assess outcome 6 in particular and, to a lesser extent, outcomes 7 and 8.

Though students are not required to publish peer-reviewed papers for their thesis, we strongly encourage it. With few exceptions that I am aware of, most of our students do publish at least some of their work in scientifically-based peer-reviewed journals. They are also strongly encouraged to present their research at various local, regional, national and international conferences. For example, one of Prof. Pravica's students, Daniel Sneed, who graduated from UNLV with B.Sc. and masters degrees in physics is currently a Ph.D.-seeking student within our graduate program. He won the “Outstanding Poster” award from the US Department of Energy/Stockpile Stewardship meeting on matter subjected to extreme conditions when he was a masters-seeking student. Every year, at least five of our graduate students attend this meeting. A number of our graduate students also participated in various summer schools/workshops as well as were awarded research internships at Los Alamos and Lawrence Livermore National Laboratories (LANL and LLNL). These experiences are intended to aid the students in developing their thesis projects, improving their research skills, and exposing them to US Department of Energy facilities and research challenges that are tackled by these facilities.

During the masters-seeking student's career, he/she are expected to hold yearly meetings with their thesis committee and discuss progress (both course-related and thesis-related) by giving a presentation discussing their progress. The student’s progress is judged during these meetings by private conversations amongst the committee members.

Finally, our department has also instituted a policy (agreed upon formally by the Department in the Fall of 2015) to have the Assessment Coordinator interview all graduating undergraduates one-by-one. Questions from a standard template are asked and recorded.

What was learned from the assessment results?

The faculty have made great strides in improving the quality and expectations of the masters thesis. We have found that the requirement of graduate students to meet...
With their thesis committee at least yearly has been very instrumental in identifying potential problems early and help them develop their thesis project and focus on the research problem sooner. As a result, we have observed a reduced average time for our students to complete and defend their masters thesis on average.

From the exit interview data gathered, students have complained about the lack of offerings of important upper-level courses that they need to graduate. This is in part due to a paucity of professors as a number have either retired or passed away. There was also some criticism of the varying level of teaching and supervisory quality with some professors (allegedly) leaving class early (e.g.). As result, some students didn’t feel that they learned as much as they should have for some classes. Some students explained that they like professors who teach via the blackboard rather than powerpoint. Some courses used math which some of students explained that they had not formally had yet. Various textbooks were criticized as being too outdated.

On the positive side, students in general felt that by having significant research experience and exposure as an undergraduate, they were well prepared for pursuing graduate studies and lifelong learning. All students interviewed felt that their UNLV physics education would help them succeed. In general, the students felt that their UNLV physics undergraduate education was excellent and were all largely satisfied. We also are developing a tremendous track record of having our students continue on to further their studies via graduate school (both here at UNLV and elsewhere) and/or other training.

The High Pressure Science and Engineering Center (HiPSEC) within our physics and astronomy department continues to receive feedback from the US Department of Energy (DOE)/NNSA on our efforts to train the next generation of America’s weapons scientists based on regular site visits/reviews. The feedback has in general been very positive. The NNSA reviewers suggested that we expand our efforts to expose students to national facilities and NNSA problems of interest by encouraging them to seek internships and fellowships outside of UNLV. We have been doing this. We have had a number of students (e.g. graduate student Melanie White who received her B.Sc. in physics here at UNLV) who have participated in DOE-sponsored workshops at Lawrence Livermore National Laboratory and Los Alamos National Laboratory to expose them to research and “real world” problems that are of interest to the DOE. Many of our students regularly travel to national and international laboratories such as the Advanced Photon Source and Canadian Light Source. Faculty members are explicitly encouraged to bring students with them to conduct experiments. In fact, due to a recent increase in HiPSEC-wide competition for beamtime at the Advanced Photon Source, faculty have a much higher chance to receive beamtime if they bring students with them. This gives faculty an incentive to involve students in research.

☐ How did the program respond to what was learned?

The Assessment coordinator has met with the Chair to discuss results of the exit interviews. We have also hired a tenure-track experimental condensed matter physicist (Ashkan Salamat) who is aiding in absorbing some of the burden for Physics 413 (Intermediate lab I). A tenure-track astrophysicist (Jason Steffen) and tenure-track theorist (Quiang Zhu) have joined the faculty. These hires were instituted to replace retired or deceased faculty.

Due to the suggestions made by the NNSA reviewers, we have made more efforts encourage our students to apply for research-based internships (e.g. at Los Alamos or Lawrence Livermore National Labs) as well as summer school workshops for our graduate
students. We feel that the efforts will aid the students in making positive contacts with scientists at these DOE-run facilities which may aid them when later seeking employment.

It should be noted that during the post-presentation phase of the Ph 493 course last December 2016, a vigorous discussion followed pertaining to formally training students on public speaking and the process of researching, reading and digesting peer-reviewed papers. The late Prof. Lon Spight taught a one credit graduate-level seminar in the past but has since passed away. Prof. Ashkan Salamat organizes a “Condensed Coffee” for students (mostly from his research group) where the latest state-of-the-art research papers are presented by one of the students (including graduate students) once a week and discussed. HiPSEC also organizes a seminar every week where, barring an invited speaker, one student talks about a paper or topic. The problem with these efforts is that they are voluntary and often students don’t participate. We are actively discussing means to encourage student participation in these types of educational events which may include making a new seminar course for credit.

Please limit the narrative portion of your report to no more than four pages. You may attach appendices with data, tables, charts, or other materials as needed. Please explain the relevant conclusions from any appendices in your narrative. Please contact the Office of Academic Assessment if you have questions or need assistance.